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Abstract. Scattering of a plane electromagnetic wave by free and bound wave packets is analyzed by
semiclassical radiation theory. It is shown that the theory gives the correct answer to the question of
radiation intensity in the photoelectric effect and to the correlation problem in Compton scattering. The
expression for the intensity of the scattered radiation differs from the cross section which is derived from
the model based on the particle nature of the electromagnetic field. The meaning of this difference is
discussed. Low frequency spectrum of the scattered radiation on a bound charge is obtained.
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1 Introduction

Scattering of an electromagnetic (EM) wave by a charge
is an old problem and has been treated on numerous occa-
sions. Two typical situations are encountered: (i) scatter-
ing by a free and (ii) by a bound charge. In the first case
the Compton effect is dominant and its description for a
delocalized, plane wave, charged particle is summarized
in the Klein-Nishina formula [1]. This formulation gives
the correct relationship between the initial and the final
parameters of the scattering event (the frequency of the
EM wave and momentum of the charge) and the correct
intensity distribution of the scattered radiation (cross sec-
tion). In the second case several effects are produced which
are distinguished according to the nature of energy trans-
fer between the EM field and the charge. Among those the
Compton and the photoelectric effects are the best known,
and their explanation is normally given through the con-
cept of the photon. According to this the photoelectric
effect happens when the energy of the scattered charge is
equal to the energy of the absorbed photon (modified by
the ionization energy), meaning that as a consequence no
scattered photon (radiation) is observed. In the Compton
effect, on the other hand, the scattered photon (radiation)
is observed but its frequency is shifted relative to the fre-
quency of the incident photon (EM wave). The kinematics
of the Compton effect, both for a free and a bound charge,
is very similar and straightforward. However, calculation
of the cross section, whether the charge is free but local-
ized (instead of a plane wave it is represented by a wave
packet) or bound, is not straightforward. One of the ear-
liest model for this purpose was developed by DuMond
[2], and it was based on the assumption that the photon
is scattered by a charge having a certain velocity. In the
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situation when the charge has a spread of velocities, as
in a wave packet or in a bound state, the cross section is
then directly related to the probability of finding a charge
with this velocity (given by the squared modulus of the
momentum space wave function).

A more rigorous (non relativistic) derivation of the
cross section is again based on the assumption of the par-
ticle nature of the EM field [3–7]. The theory which is used
for this purpose is generalized from the one for calculat-
ing cross sections in particle collisions, say collision of a
charged particle with an atom (for a concise but a very in-
structive review see Ref. [8]). This is done by replacing the
Hamiltonian for the incoming particle with the Hamilto-
nian representing a free photon, and the interaction term
between the incoming and the target particle (atom) is
replaced by the appropriate one when the photon is in-
volved [9–11]. With these modifications one derives (usu-
ally in the form of a Born expansion) the photon-atom
(Compton) cross section. From the general result various
approximate ones are obtained, e.g. in the impulsive model
one gets the DuMond cross section.

There has been, and still are, attempts to find an alter-
native description of the Compton and the photoelectric
effects. One can think of several reasons why is this so,
but the one which motivates the most is that the con-
cept of the photon, and its theoretical consequences in
the form of the quantum field theory, is not physically
and mathematically a satisfying idea. By trying entirely
standard classical ideas is perhaps too extreme view, but
a viable compromise could be the semiclassical theory. By
the standard classical theory it is meant: description of
particle (charge) dynamics by the Newton equation and
that of the EM field by Maxwell equations. The semiclassi-
cal theory implies that Newton equation is replaced by the
Schroedinger equation. The use of prefix “standard” for
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classical theory means that there is another formulation in
which the basic ingredients of classical theory are retained,
but the emphasis is shifted from the concept of classical
trajectory to the probability. For the purpose of this pa-
per this alternative description is of no consequence, and
will not be discussed. Only to mention that, for exam-
ple, the frequency dependent energy transfer, which will
be mentioned shortly, can be explained by classical theory
[12].

As mentioned earlier, the Compton and the photoelec-
tric effects come together in the scattering of the EM wave
on a bound charge, and hence any alternative description
should be general enough to account for, if not all, but
most of their features. This is precisely the weakness of the
standard classical description: while the attempts to ex-
plain the frequency shift in the Compton scattering show
some success [13–18] the theory is unable to explain the
photoelectric effect, or the intensity of the scattered ra-
diation in both of them. In particular the photoelectric
effect presents an insurmountable problem for standard
classical theory, because it cannot explain the evidence
that the energy transfer from the EM plane wave to the
charge is a linear function of the frequency. In the classical
picture the charge acquires, in the first order of coupling,
oscillations in unison with the electric component of the
EM field. It is only in the second order of coupling that
the charge acquires a uniform velocity, in addition to the
velocity which it had before the onset of the interaction.
Classical description of the frequency shift for the scat-
tered radiation is based on the Dopler shift which arises
from these two effects. However, for the photoelectric ef-
fect there is nothing which indicates that the change in
the velocity of the charge depends on the frequency of
the EM field, as the experimental evidence showed. This
fact alone was sufficient to dismiss the standard classical
theory for description of the phenomena on the scale of
elementary charges. In fact, as we know today, both types
of the energy transfer are present (in the extreme of very
strong fields the amplitude, i.e. classical, energy transfer
dominates [19]), but for the low intensity radiation the
dominant is the frequency dependent.

Two amendments were suggested, which did not alter
the basic concepts of classical theory but accommodate
the experimental evidence. They are mentioned because
even today the discussion concerning them is used as an
argument against alternatives to the concept of the pho-
ton. One amendment is due to Einstein, and suggests that
the charge absorbs only a “bundle of the EM energy”,
and not any value. This “bundle of energy” is propor-
tional to the frequency of the EM radiation. As a conse-
quence, the charge acquires energy which is proportional
to the frequency of the EM field, but for that certain time
is required. In other words, there is a delay between the
time of incidence of the EM wave on the charge and the
time when it moves. The lower the intensity the larger
this time delay. The other amendment suggested that the
EM field is transmitted by the photons (particles) whose
energy and momentum are proportional to the frequency
of the EM wave. The flux of photons in the EM wave

is proportional to the squared modules of the EM field
(Poynting vector). Being a particle, the photon transfers
energy instantaneously and hence there is no time delay.
Experiments were made to distinguish between the two
amendments and showed that there was no time delay.
This result is cited as a positive evidence against classical
(and even semiclassical) models, and supports the photon
concept. It should be said, though, that this argument is
false because the amendment based on the “bundle of en-
ergy” is not a workable model which can be put into the
framework of classical dynamics. It is more of a “wish-
ful thinking” because there is no way it can be connected
with either Newton or Maxwell equations, i.e. the two
equations put together would not produce result which is
envisaged. However, the amendment based on the photon
concept is of that kind, i.e. by abandoning the EM field
equation for the sake of the classical particle equation the
correct answer is obtained. Therefore, putting that argu-
ment against classical theory misses the point, and the
strongest is: the standard classical theory fails because it
cannot explain the frequency dependent energy transfer
between the EM field and the charge.

The semiclassical theory is more successful for describ-
ing interaction between the EM field and the elementary
charges, but there are objections to it which need to be dis-
cussed. These objections can be put into two groups: those
which are based on the “classical” arguments and those
which are based on the consequences associated with the
effect of the “vacuum polarization”. In the second group
are the effects such as the Lamb shift or the anomalous
magnetic moment of electron. This group of objections will
not be discussed here (for a good review see Ref. [20]),
but should be pointed out that there were attempts to
accommodate them by reformulating the radiation the-
ory so that the concept of the classical EM field is re-
tained. Among these are: random electrodynamics [21] or
stochastic electrodynamics (for a review of the subject see
Ref. [22]), neoclassical electrodynamics field theory [23]
and self field quantum electrodynamics [24,25] (in fact
not a proper semiclassical theory). If these objections are
neglected we assume tacitly that semiclassical theory: (i)
has limitations which are only important on the scale on
which we are not working, or (ii) has not been sufficiently
investigated so that these objections can be alleviated (it
was recently shown that the anomaly in the magnetic mo-
ment of electron can be explained without the QED [26],
and the work is in progress to show the same for the Lamb
shift).

We will briefly discuss the “classical” arguments
against the semiclassical theory. Among them is the one
which was already discussed: the question of the time de-
lay. Description of the photoelectric effect by semiclassical
theory can be found in almost any text book on quantum
theory, and some of its more detailed features have been
investigated by the same approach [27]. No problem with
the time delay was encountered, although this feature was
not explicitly investigated. Hence it can be safely assumed
that the photoelectric (or ionization) process is instanta-
neous, in the semiclassical description.



S.D. Bosanac: Semiclassical theory of Compton and photoelectric effects 319

The other argument against the semiclassical theory
is based on the energy conservation consideration. If radi-
ation of a very high frequency impacts on an atom then
electron of a very high energy is ejected, even for a very
weak intensity of radiation. It appears that this is an en-
ergy imbalance between the input and the output, if the
EM field is assumed. This is indeed the case if it is for-
gotten that the total energy conservation law assumes the
energy of the field and the average energy of the electron
[28], and not its precise energy, as in the standard clas-
sical theory [29]. The average energy of electron involves
probability of finding it with certain energy, which is pro-
portional to the squared amplitude of the EM field. In
the model with the photon, on the other hand, it is one
thing to analyze energy transfer for the scattering event
but completely other to ask what the probability for this
event is. The probability involves also the flux of photons,
which is proportional to the squared modules of the EM
field amplitude. The total energy, therefore, in the semi-
classical and the photon model is the same.

There is one additional problem with the semiclassi-
cal description of the photoelectric effect. If the photon
model is correct then the prediction is that there will be
no scattered one because all its energy goes into that of
the electron. In the semiclassical picture this means that
there would be no scattered radiation. This is shown in
the paper, and the qualitative argument which supports
the affirmative answer is the following: in the first order of
coupling the bound electron is promoted into the contin-
uum, and acquires uniform velocity. In the second order
of coupling the free electron oscillates and reradiates the
EM field. Therefore, in the photoelectric effect, being of
the first order in coupling, there will be no reradiated EM
field because electron in the uniform motion does not ra-
diate.

While the semiclassical theory does not have too many
problems with the photoelectric effect, it has problems
with the Compton effect. Although the frequency shift
could be obtained (see e.g. Ref. [30]), the biggest problem
is explaining the correlation experiments. Briefly: in the
Compton effect there is a definite experimental evidence
that the frequency of the scattered radiation at a particu-
lar angle and the momentum of the scattered charge (elec-
tron) are correlated according to the standard expression
derived from the photon model. The result of this exper-
iment indicated the failure of the semiclassical radiation
theory because it could not explain that the two events
are correlated.

In this paper we show that the above potential fail-
ures are not present in the semiclassical radiation theory.
If that is the case then one can ask a question: in what way
then the approach in this paper differs from that which has
been described previously, and showed failures? The only
difference is in the strict implementation of the classical
theory of radiation (reviewed briefly in Sect. 2), and the
rules for solving quantum dynamics equations. It is pre-
cisely these points which the previous analyses lack, e.g.
the dipole approximation in the calculation of the spec-
trum is widely used. As the result of the strict implementa-

tion of the classical radiation theory complicated integrals
will be encountered. However, by a suitable transforma-
tion they can be calculated almost analytically.

In addition to proving previously mentioned points,
we also give expression for the Compton cross section and
show that it differs fundamentally from the one which is
derived from the model based on the concept of the photon
[2,6]. Instead of being proportional to the integral over the
momentum probability distribution (the Compton profile)
in the semiclassical radiation theory it is proportional to
the squared modules of the same integral but over the
probability amplitude in the momentum space. Crudely
speaking, the difference is as between the classical addi-
tion of probabilities (in the photon model) and the quan-
tum addition of amplitudes (in the semiclassical radiation
theory). Despite this the two cross sections do not dif-
fer much in the numerical value, but sufficiently so that
the experiment, in principle, would be able to distinguish
it. The exception is for the low frequencies of the scat-
tered radiation on the bound charge where we obtain a
spectrum which is finite. It is known that in the photon
model it is infinite, resulting from what is called the “in-
frared catastrophe” [31–33], and its usual explanation is
in terms of the classical theory of radiation [34]. In this
paper the finite spectrum is derived from the semiclassi-
cal theory, without having to use additional arguments for
distinguishing the low frequency from the high frequency
scattered radiation field.

In addition to those features we also obtain the cross
section for the inverse Compton scattering. For the lo-
calized wave packets, whether free or bound, the effect
accompanies the usual Compton scattering.

2 Radiation associated with a charge

The starting point of our analysis is the classical expres-
sion for the intensity of radiation produced by a time vary-
ing and localized current J (r, t) [29]

P =
c

4π
E×H

≈
n̂

r2

{[∫
d3r′J̇ (r′, τ ′)

]2

−

[
n̂

∫
d3r′J̇ (r′, τ ′ )

]2
}

(1)

where τ ′ = t − n̂·r ′

c
is the retarded time (the term r/c

has been omitted). The unit vector n̂ points in the radial
direction, and the dot designates the time derivative.

For the current J we assume the following properties.
Prior to t = 0 it is zero, and thereafter it results from
interaction between a localized charge distribution (prob-
ability distribution) and a linearly polarized EM wave. It
will be assumed that the distribution is localized in the
space having the approximate dimensions of a hydrogen
atom, but otherwise it is free. In a separate section we will
discuss the case when the electron is bound in a hydrogen
atom.
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If the interaction time is T then the total power in the
direction n̂ is

W =

∫ T

0

dt′P(r, t) (2)

and by taking the Fourier transform of the current

J(r, t) =

∫
dωj (r, ω) e−iωt (3)

the spectrum I(ω) of radiation is

I(ω) = w2

∫
d3r′ d3r′′ {j (r′, w) · j ∗ (r′′, ω)

− [n̂ · j (r′, w)] [n̂ · j ∗ (r′′, ω)]} ei
ωn̂
c
·(r′′−r′ ) (4)

This current is the result of an interaction between the
wave packet and the EM wave

A = x̂A0 f(z − ct) = A0 a (5)

and depending on the choice of the method for its calcula-
tion we distinguish classical and semiclassical approach. In
the latter one uses as the tool quantum theory, hence the
name semiclassical theory because the spectrum is calcu-
lated from the rules of classical electrodynamics. The use
of classical theory for calculating the current was made
possible only recently, when a suitable amendment was
made in it [35]. It was shown on various examples that
both the relativistic [36,37] and non relativistic [12] dy-
namics of a charge in an EM field can be reproduced in
almost total accord with quantum theory. Therefore, we
could have taken either of the approaches, however, the
semiclassical one is relatively easier to implement and this
is the only reason why it is used. It should be kept in mind,
though, that the same results could be obtained from clas-
sical theory.

In this work we will use relativistic quantum theory
for calculating the current for an unbound particle, and if
for simplicity a scalar (spin 0) particle is considered then
the equation which needs to be solved is the Klein-Gordon
(KG)

∂2ψ

∂t2
= (∇− iεa)

2
ψ − ψ. (6)

Its general solution, for the positive energy states only, is
given by [36]

ψ =

∫
d3kA(k ) eik·r−iet+iδ (7)

where e =
√

1 + k2 and

δ = −
ε

2(kz − e)

∫ z−t

u0

du
[
εf2(u) − 2kxf(u)

]
. (8)

The amplitude A(k ) is determined from the initial con-
dition ψ0. Throughout this work we use units in which
~ = c = m = 1.

The probability current for the KG equation is

J = Im (ψ∗∇ψ) − aψ∗ψ (9)

and if it is assumed that ε is small, and |e−kz| ≈ 1 (a non
relativistic distribution of momenta), then the current is

J =Im (ψ∗0∇ψ0) + ε [Im (ψ∗1∇ψ0)

+Im (ψ∗0∇ψ1)− aψ∗0ψ0] (10)

where

ψ0 =

∫
d3kA(k ) eik·r−iet (11)

and

ψ1 =

∫ z−t

u0

du f(u)

∫
d3k

kx

kz − e
A(k ) eik·r−iet. (12)

If the initial ψ is spherically symmetric then the first term
in (10) has only a radial component and does not pro-
duces a radiation field. The remaining terms produce a
radiation field but this is quite complicated. However, the
current simplifies if the initial ψ0 is relatively broad, say
it corresponds roughly to the dimensions of the 1s state
of the hydrogen atom. In this case the spread of momenta
is small (non relativistic), meaning that |A| is negligible
for k larger than kmax << 1. For the 1s state of hydrogen
atom the amplitude A(k) drops by a factor α (the fine
structure constant) for kmax ≈ α3/4 << 1, which is in-
deed small compared to 1. The terms with ψ1 in (10) can
therefore be neglected and so the current is

J = −ε x̂ψ∗0ψ0 f(z − t). (13)

If f(z − t) = cos [w0(z − t)] then the Fourier transform of
the current, which enters in (4), is

j (r, w) =
iεx̂

8π

∫
d3k d3k′A(k )A∗(k′)eir·(k−k′ )

×

[
eiT(ω−e+e′−ω0) − 1

ω − e+ e′ − ω0
eiω0z + (ω0 → −ω0)

]
(14)

and the spatial integral over j(r, ω) in (4) is∫
d3r e−iωn̂·rj (r, ω) ≈ x̂

∫
d3kA(k)A(k1)

×
eiT (ω−e+e1−ω0) − 1

ω − e+ e1 − ω0
+ (ω0 → −ω0)

(15)

where k1 = k + ω0ẑ− ωn̂ and e1 =
√

1 + k2
1. In deriving

this it has been assumed that A(k) is real and depends
only on the modulus of k.
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3 Spectrum of a free charge

To understand the spectrum, the integral (15) should be
calculated, when the parameter T is large. More precise
definition of large T will be discussed in the following sec-
tion, while for the moment it is assumed to be infinite.
The integral (15) can then be evaluated approximately by
using the variable kz, which is defined as the projection of
the vector k on ∆ = ωn̂− ω0ẑ, i.e.

k ·∆ = kz∆. (16)

The integral which needs to be calculated is therefore

B=

∫ ∞
−∞

dkz A(k)A(k1)
eiT (ω−e+e1−ω0) − 1

ω − e+ e1 − ω0
+ (ω0 → −ω0).

(17)

In the first step the integration path is slightly shifted into
the lower half of the complex kz plane, where Im(−e +
e1) < 0 and hence exp[iT (−e + e1)] can be neglected.
Without the neglected term the integrand in (17) has a
pole when

ω − e + e1 − ω0 = 0 (18)

and is given by

k0
z =

1

2
|ωn̂ − ω0ẑ|

+
ω − ω0

2

[
2 + 2κ2 + ωω0(1− nz)

ωω0(1− nz)

] 1
2

(19)

where κ2 = k2
x + k2

y. By returning the integration path
back to the real kz axes the contribution of this pole should
be taken into account. The integral is therefore

B = − iπ
A
(
k0
)
A
(
k0

1

)
e0e0

1

k0
z(ω − ω0)− e0∆

− P

∫ ∞
−∞

dkz
A(k)A(k1)

ω − ω0 − e+ e1
+ (ω0 → −ω0) (20)

where the superscript 0 designates that kz is replaced by
k0
z . The label P indicates the principal value of this inte-

gral.
The first term in (20) is the contribution from the pole.

It has a maximum value for either k0
z = 0 or k0

z −∆ = 0
because of the assumption that A(k) is localized in the
narrow interval around |k| = 0. Each equation has only
one solution for ω. The solution of the first is designated
by ωc while that of the second by ωic. They are given by

ωc =
ω0

1 + ω0(1− nz)
; ωic =

ω0

1− ω0(1− nz)
(21)

where κ2 has been neglected.
If ω0 < 1 and ω0 ≈ ω >> k2 then k0

z is approximately

k0
z ≈

∆

2
+

ω − ω0√
2ωω0(1− nz)

(22)

where the estimates ω − ω0 ≈ ω2
0 and ∆ ≈ ω0 have been

utilized, and it follows that

k0
z(ω0 − ω) + e0∆ ≈ e0∆ (23)

Furthermore, k1 is nearly independent of κ2 because
ω − ω0 ≈ ωc − ω0 ≈ ω2

0 and ∆ ≈ ω0, hence the contri-
bution in (20) from the poles ωc and ωic is approximately

Bp ≈ iπ
A(∆)

√
1 +∆2

∆

×

[
A

(√
κ2 + k02

z

)
+ A

(√
κ2 + (k0

z −∆)
2

)]
.

(24)

The contribution in (20) from the principal value of the
integral can also be estimated. If it is assumed that k0

z ≈ 0,
i.e. ω is close to the frequency ωc, then one can show
that this contribution is negligible. When k0

z is large, i.e.
|k0
z | >> α, then we can write

P

∫ ∞
−∞

dkz
A(k)A(k1)

ω − ω0 − e+ e1
≈

∫ η

−η
dkz · · ·+

∫ ∆+η

∆−η
dkz · · ·

(25)

where η is small but sufficiently large so that |A(η)| is
negligible. Within the limits of integration the integrands
are nearly constant except for A(k) in the first integral
and A(k1) in the second. When this is taken into account
the integral (20) is approximately

B =
(ω − ω0)A(∆)

1 + ωω0(1− nz)−
√

1 +∆2

∫ ∞
−∞

dkz A(k)

+ iπ
A(∆)

√
1 +∆2

∆

×

[
A

(√
κ2 + k02

z

)
+ A

(√
κ2 + (k0

z −∆)
2

)]
.

(26)

The difference between the exact B, given by (17), and
(26) is shown in Figure 1 for ω0 = 0.1, and for two scat-
tering angles. The real and imaginary parts ofB are shown
separately. For the amplitude A(k) the momentum distri-
bution for a 1s wave function has been taken. The exact
value of the integral (17) is shown by a solid line while
the approximation (26) by a dotted line. The agreement
for both the imaginary and the real parts is very good,
for all ω, except in a small vicinity of ωc and ωic, where
this is not the case for the real part. However, in this re-
gion the exact real part is relatively small compared to
the imaginary part, and hence it can be neglected.

By using the approximation (26) the integral (15) is
now∫

d3r· · ·≈ x̂
4π(ω − ω0)A (∆)

1 + ωω0(1− nz)−
√

1 +∆2

∫ ∞
0

dk k2A(k)

+ x̂
2π2iA (∆)

√
1 +∆2

∆

×

[∫ ∞
|k0
z|

dp pA(p) +

∫ ∞
|k0
z−∆|

dp pA(p)

]
(27)
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Fig. 1. Real and imaginary parts of the Fourrier transform
of the spatial integral over the current for the scattering of
EM wave on a wave packet which has the form of the 1s wave
function of a hydrogen atom. The solid line represents the exact
value and the dotted line represents the approximation derived
in the text.

which is used for calculating the spectrum given by (4).
One typical is shown in Figure 2, for the example treated
in Figure 1, where the solid line represents the spectrum
which is calculated from (20). The dotted and the bro-
ken lines show separately the contribution from the real
and imaginary parts of (27). The two contributions ap-
proximate the spectrum in two different intervals. The
contribution from the pole (imaginary part of (20)) ap-
proximates the spectrum in the vicinity of ωc or ωic, but
the contribution from the principal value of the integral in
(20) (real part of B) approximates the spectrum outside
those regions.

In the vicinity of ωc the spectrum takes a simple form
if the approximation (27) is used; it is given by

I(ω)≈ω2A
2 (∆)

(
1 +∆2

)
∆2

[∫ ∞
|k0
z|

dpA(p)

]2[
1− (n̂ · ẑ)

2
]
.

(28)

A characteristic feature of the spectrum is that it con-
sists of two contributions: (i) the factor A2(∆) which is
the probability of finding an electron with the momentum
−∆ (in the derivation of (26) the amplitude A is a func-
tion of | −∆|) and (ii) the remainder which can be inter-
preted as the “bare” contribution to the radiation inten-
sity. In other words, the intensity of radiation is weighted
by the probability of finding an electron with the momen-
tum k1 = −∆. This shows that the dominant frequency
of radiation, which is scattered in the angle θ, is correlated
with the momentum of the electron. It is interesting that
if one formally associates ωcn̂ with the momentum of the
scattered radiation and ωc with its energy, then the equa-
tions which determine the relationship between these two
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)

Fig. 2. Spectrum resulting from the scattering of an EM wave
on a free wave packet which has the shape of the 1s wave
function of hydrogen atom. The solid line represents the exact
spectrum, the dotted line is the contribution from the real part
of the integral B, and the broken line is its imaginary part.
Comparison is made with the spectrum based on the model
by DuMond (dotted-broken line). The spectrum is in arbitrary
units with a common normalization factor.

correlated parameters are

k + ω0ẑ = k1 + ωn̂ (29)

e + ω0 = e1 + ω.

The first equation is obtained when evaluating (15) and
the second when evaluating (17). In these equations we
recognize the momentum and energy conservation law for
the system consisting of an electron and a (hypothetical)
particle (we can call it a photon). The first has momen-
tum k and energy e while the photon carries momentum
ω and energy ω. The frequency ωc, given by (21), is ob-
tained by taking initial momentum of electron k = 0 and
initial energy e = 1, while for the photon these quanti-
ties are ω0ẑ and ω0, respectively. The index c of ω derives
from the work of Compton, because he originally used the
concept of the photon to explain the frequency shift of
the scattered radiation [38]. This relationship, as we have
seen in this paper, can be derived without introducing this
concept.
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The frequency ωic is derived from the equations

k + ω0ẑ = ωic n̂ (30)

e + ω0 = 1 + ωic

where it has been assumed that k1 = 0. The meaning of
these is that the photon is scattered by the electron which
carries momentum k and after the event the electron is
stopped, i.e. k1 = 0. This effect is known and it is called
the inverse Compton (ic) scattering. In the case when the
electron is entirely delocalized (plane wave) it is not ob-
served together with the Compton scattering, as it is in
our case. It is observed as a separate event, but for this
a very energetic electron is needed, such is in the cosmic
processes [39]. However, for a localized electron there is a
spread of momenta and therefore the two effects are ob-
served together, the cross section for the inverse Compton
scattering being always weaker. When we will consider
bound electron they will always be present.

The approximate spectrum (28) should be correlated
with the one which is most widely accepted, which goes
back to the intuitive reasoning of DuMond [2], and sum-
marized many times (e.g. Ref. [5]). It should be mentioned
that we are dealing with a free wave packet and therefore
the impulsive approximation, from which the DuMond
cross section is derived, is nearly exact. There is a big dif-
ference between the two spectra (the cross sections) and
briefly this can be summarized as follows: in the approach
described here the spectrum is proportional to the square
of the integral over A(k), while in DuMond‘s formula it
is proportional to the integral over A2(k); specifically, the
spectrum in DuMond‘s treatment is proportional to

I(ω) ≈
ω

∆

∫ ∞
|k0
z|

dpA2(p) (31)

and for the sake of comparison with the treatment here its
value is shown in Figure 2 by the broken-dotted line. In
the vicinity of ωc it is quite close to the contribution (28).
However, this does not eliminate the fundamental differ-
ence between the treatment based on the photon model,
the result of which is given essentially in the form (31),
and the one based on the semiclassical radiation theory,
the result of which is (28). As mentioned in Introduction,
the result is as between classical (photon model) and quan-
tum theory (semiclassical theory). In the first one sums the
probabilities and in the second one sums the amplitudes,
and then takes the squared modulus.

4 The low frequency limit

The problem with the derivation in Section 3 is that the
limit T → ∞ was taken formally, without considering
physical implications. The result is a spectrum I(ω) which
does not have the correct limit for ω0 → 0, when it should
approach the so called Thompson cross section, i.e.

lim
ω0→0

I(ω) ≈
[
1 + cos2(θ)

]
. (32)

This is obviously not the case with (28) (and also the
cross section (31)), where the angle dependence is of the
form (1 + cos2(θ))/(1 − cos(θ)) (after averaging over the
polarization of the EM wave). As we shall see, in order to
satisfy this limit it is essential to assume that T is finite,
but large.

In the analysis of Section 3 the limit T → ∞ was in
fact not essential. It was sufficient to assume in (17) that
on the integration path in the lower half of the complex
kz plane the function exp [iT (−e+ e1)] is negligible. The
question is only how negative the imaginary part of kz
should be before this approximation can be made. If the
width of A(k) is of the order α then it is reasonable to
assume that this shift cannot be larger than this value.
For example, the momentum space 1s wave function of a
hydrogen atom is

A(k) ≈
1

(α2 + k2 )2 (33)

which has a pole at kz = ±iα (for κ = 0). If the shift in
kz is beyond this pole, because T is not sufficiently large,
then the contribution to the integral (17) comes from the
pole at −iα, and B is proportional to

B ≈
eiT (ω−ω0+iα∆) − 1

ω − ω0 + iα∆
(34)

instead of having the value (26).
The previous discussion gives a natural criterion for de-

ciding what is large T . If e−Tαω0 << 1 or T >> 1/(αω0)
(we used the approximation ∆ ≈ ω0) then T is large.
Based on this criterion it is evident that the derivation in
Section 3 is not legitimate because the assumption T →∞
was made regardless of the value ω0. A proper derivation,
therefore, would require that T has a large, but a finite
value, and then the integral (17) is calculated. If the crite-
rion for large T is not fullfiled then it cannot be calculated
by the described method. The same reasoning also applies
when the width of the momentum distribution shrinks, or
equivalently when the particle becomes delocalized in a
wider space. In this respect the results of Section 3 are
also not correct in the plane wave limit (α→ 0).

When T is not large, meaning that Tαω0 << 1, the
integral (17) is approximately

B ≈
eiT (ω−ω0) − 1

ω − ω0
(35)

and the spectrum takes a very simple form

I(ω) ≈
[
1− (n̂ · ẑ )2

]
δ(ω − ω0) (36)

which is the functional form of the Thompson radiation
intensity. The identity

lim
T→∞

[
1

T

eiT (ω−ω0) − 1

ω − ω0

e−iT (ω−ω0) − 1

ω − ω0

]
= 2πδ (ω − ω0)

(37)

and approximation k1 ≈ k was used in the derivation.
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5 Scattering of an EM wave by a bound
charge

In the previous discussion we have considered the scatter-
ing of a plane EM wave on a free, but localized, charge.
Here we will discuss the more realistic case when this
charge is bound and initially in a stationary (say the
ground) state n0. The EM plane wave is given by (13)
and the solution of Schroedinger equation is given in the
form of expansion

ψ =
∑
n

an(t)φn(r ) +

∫
dk bk(t)Φk(r ) (38)

where for simplicity the index n and the integral over k
also assumes a sum over the angular momentum states.
If it is assumed ω0 >> α >> |En0 | then the dominant
coefficient is

b
(1)
k = e−Ekt

∫ t

0

dt′ eit
′ (Ek−En0) < k|a ·∇|n0 > (39)

and the leading term in the current is

J (1) = Im
[
ψ(1)∗∇ψ(0) + ψ(0)∗∇ψ(1)

]
− A |ψ(0)|2

(40)

where ψ(0) = φn0(r )e−iEn0 t, and ψ(1) is given by (38)
where the coefficient is (39). The contribution of the sec-
ond term in (40) to the spectrum is relatively simple. The
spatial integral over the Fourier transform of the current
is∫

d3r e−iωn̂·r j (r, ω)

≈
x̂

2

∫
d3r|ψ(0)|2e−iωn̂·r + iω0z

eiT (ω−ω0) − 1

i(ω − ω0)
(41)

which in the spectrum contributes a single line at ω = ω0,
irrespective of the scattering angle. This term, therefore,
represents elastic scattering of radiation, in contrast to
the radiation by a free distribution where it contributes
to Compton scattering. An explanation for the origin of
Compton scattering is now simple. A free wave packet has
a natural tendency to spread; this is the time evolution
of the probability distribution. This is coupled with the
time evolution due to the interaction with the external
field leading to a frequency shift of the scattered radia-
tion. The unperturbed bound states, by their definition,
are stationary and their time evolution is in the first ap-
proximation entirely determined by the external field, and
hence there is no frequency shift of radiation.

The resulting radiation is all concentrated in the for-
ward direction because the momentum distribution is nar-
row and the only contribution to the integral (41) comes
from the region where n̂ · r ≈ z.

The contribution to the spectrum arising from the first
term in (40) can be extracted from the integral∫

d3r e−iωn̂·r

∫
dt ψ(0)∗∇ψ(1) eiωt =

−
1

2

∫
dk

< n0|e−iωn̂·r∇|k >< k|eiω0z∇x|n0 >

Ek −En0 − ω0

×

[
eiT (ω−ω0) − 1

ω − ω0
−

eiT (ω+En0−Ek) − 1

ω +En0 −Ek

]
· (42)

From the assumption that ω0 is large the function Φk(r )
can be replaced by a plane wave eik·r. The matrix elements
in (42) are then given explicitly as

< n0|e
−iωn̂·r∇|k > ≈

k[
α2 + (k− ωn̂ )2

]2
= kA (|k− ωn̂ |) . (43)

Evaluation of the integral in k space follows the same
procedure as in Section 3. The integration path in kz is
slightly shifted into the lower half plane where the function
e−iTEk can be neglected. The remaining terms of the inte-
grand (42) have poles at Ek = En0 +ω0 and Ek = En0 +ω.
When the path is returned back to the real kz axes, and
shifted into the upper half of the kz plane, the pole at

k0
z =

√
2(En0 + ω0)− k2

x − k
2
y contributes∫

d3r · · · ≈

∫
dkx dky

k0kx

k0
A (|k0 − ωn̂ |)

×A (|ω0ẑ− k0 |)
eiT (ω−ω0) − 1

ω − ω
(44)

where k0 has the z component equal to k0
z . The integrals

in kx and ky have their maximum contributions at kx =
ky = 0 and nx = ny = 0, so that (44) is negligible because
of the presence of the factor kx in the integrand.

The small intensity of the scattered radiation has phys-
ical meaning. The spectrum arising from the first term in
the current (40) consists of a single line at ω = ω0, but the
electron comes out with the energy En0 + ω0. This term,
therefore, describes the spectrum of radiation resulting
from the photoelectric effect, and its negligible value is
consistent with the usual explanation: a photon of energy
ω0 is absorbed by the electron and there is no scattered
photon but electron is emitted with energy ω0 + En0 . It
should be reemphasized: in our treatment the intensity
of radiation was obtained from the semiclassical radiation
theory without using the concept of the photon.

6 The second order correction

The correction to the current which is of second order in
ε is

J (2) = Im
[
ψ(2)∗∇ψ(0) + ψ(0)∗∇ψ(2)

]
− a

(
ψ(1)∗ψ(0) + ψ(0)∗ψ(1)

)
(45)
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and only the spectrum arising from the last term will be
analyzed because the contribution of the first is negligible.
The integral (41) for this part of the current is

∫
d3r · · · = x̂

∫
d3r e−iωn̂·r

×

∫ T

0

dt eiωt cos [ω0(z − t)]
[
ψ(0)∗ψ(1) + ψ(1)∗ψ(0)

]
(46)

and if ψ(1) is replaced by its explicit form we get a very
lengthy expression which can be put in the form∫

d3r · · · ≈

∫
d3k kx [I1 + I2] (47)

where

I1 =
[A(k− ωn̂ + ω0ẑ)A(k− ω0ẑ)

Ek − ω0 −En0

×

(
eiT (ω−2ω0) − 1

ω − 2ω0
−

eiT (ω+En0−Ek−ω0) − 1

ω +En0 −Ek − ω0

)
+ (ω0 → −ω0)

]
− (Ek → −Ek, En0 → −En0 , k→ −k) (48)

and

I2 =
[A(k− ωn̂ + ω0ẑ )A(k + ω0ẑ )

Ek + ω0 −En0

×

(
eiTω − 1

ω
−

eiT (ω+En0−Ek−ω0) − 1

ω +En0 −Ek − ω0

)
+ (ω0 → −ω0)

]
− (Ek → −Ek, En0 → −En0 , k→ −k ). (49)

The arrows indicate how the variables in the previous term
should be replaced by new ones. In the next step the in-
tegration is distorted either into the lower or the upper
half of the complex kz plane, depending on the sign of
Ek. On this path the function e±iTEk in the integrand
can be neglected, and for the remaining terms the path
is shifted back to the real kz axes. The integral (47) will
now have a form very similar to (20); part of it is the
contribution from the poles and part of it is from the
principal value of the integral. In the analysis here the
principal value of the integral will not be discussed in
detail. There are a number of poles in the variable kz,
but among them only three basic ones; (i) the pole at
Ek = ω0 + En0 represents the photoelectric effect, (ii)
the pole Ek = ω0 +En0 − ω represents Compton scatter-
ing and (iii) the pole Ek = ω − ω0 + En0 represents the
inverse Compton scattering. It can be shown that the con-
tributions of most of the poles are negligible and only two
remain; that from the Compton effect and that from the
inverse Compton effect. The pole contribution (imaginary

part of (46) ) from the Compton effect is given by

Im

[∫
d3r · · · ]≈ π

1∑
s=0

(−1)s
∫

dkx dky ( kx − ωnx )

×
A(k sc )√

2 (En0 + ω0 − ω)− k2
x − k

2
y

×

[
A(−k sc − ωn̂ + 2ω0ẑ)

ω − 2ω0
+
A(−k sc − ωn̂ )

ω

]
(50)

where k sc = kxx̂ + kyŷ + kszẑ and

ksz = |ωn̂− ω0ẑ | + (−1)s
√

2(ω0 +En0 − ω)− k2
x − k

2
y.

(51)

Most of this contribution comes from the vicinity of |ksc | =
0, which is only possible when k1

z = 0. This condition gives
the value of ω, designated by ωc, for which the maximum
intensity in the spectrum is expected. The frequency ωc

has more meaning if it is expanded in the series of ω0

(energy En0 is treated as being of the order ω2
0), where

the first three terms are the same as in the expansion of
the function

ωc =
ω0 +En0

1 + ω0(1− nz)
(52)

which is the well known Compton frequency shift function
(in the relativistic derivation) modified, however, by the
bound state energy En0 . The source of this shift is ex-
plained by noting that ωc is a solution of the same set of
equations as (29), where the initial momentum of electron
(k) is set to zero, and its initial kinetic energy to Ek = En0

instead of to zero (in the non relativistic treatment e is re-
placed by Ek). This modification of the frequency shift of
the scattered radiation, in the case of a bound electron,
should not be confused with the so called “Compton de-
fect”. The latter is the name for the deviation between
the exact and the approximate expression for the Comp-
ton profile [6].

In the vicinity of ωc the integral (50) is approximately

Im

[∫
d3r · · ·

]
≈ 2π2ωnx

[
A(−ωn̂ + 2ω0ẑ )

ω − 2ω0
+
A(−ωn̂ )

ω

]
×

∫ k0
z

|k1
z|

dp p
A(p)√

2 (En0 + ω0 − ω)
(53)

where we set kx = ky = 0 in ksz . This integral is different
from the analogous one for the free wave packet (27) by
the factor which represents the probability amplitude of
the electron momentum. However, it can be shown from
ψ1 that the factor in front of the integral (53) has the
same meaning as for a free wave packet, and hence the
two expressions are in a total accord.

A similar derivation can be used in the vicinity of ωic

but it is not discussed here.
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Fig. 3. The same as Figure 2, but for a bound charge in the
1s state of hydrogen atom.

An example has been calculated with the same pa-
rameters as used for Figure 1. The spectrum is shown in
Figure 3, where the integral (47) has been calculated nu-
merically (solid line). For comparison we also show the
contribution from the pole term in (47) (the dotted line -
the approximation (53) is indistinguishable from the nu-
merical calculation of the pole term in (47)). The spectrum
based on the impulsive model (31) is also shown (broken
line). More accurate cross section in the photon model is
not used because the deviation from the impulsive model,
for the incident frequency of radiation which is used here,
is marginal [4]. As expected, the contribution (53) approx-
imates well the spectrum in the immediate vicinity of ωc,
where also the spectrum (31) gives nearly the same re-
sult. Away from the vicinity of ωc the pole term alone is
not sufficient to reproduce the exact spectrum which is
calculated from the integral (47).

Additional structure is observed in the low frequency
limit. This is the region where in the photon model one
gets infinite cross section, and it is called the “infrared
catastrophe”. Therefore it is of interest to give more de-
tails of its source in the semiclassical theory. The contribu-
tion to the integral (47) for ω ≈ 0 comes largely from the
term I2, because the product |A(k + ω0ẑ )A(k + ω0ẑ )| is
always larger than |A(k+ω0ẑ )A(k−ω0ẑ )| in the term I1.
This also means that most of the contribution comes from
the vicinity of k = ±ω0ẑ because it is assumed that the
amplitude A is relatively narrow and peaks at k = 0. For
large T the oscillatory terms can be omitted (the expo-
nents do not have stationary points) in I2 and Ek ≈ ω2

0/2
(and En0 ) can be neglected. In this approximation the
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Fig. 4. Comparison of spectra (exact) from the bound (solid
line) and the free (dotted line) charge.

spectrum which arises from this process is given by

I(ω) ≈
w2

w4
0

∣∣∣∣∫ d3k kxA(k) [A(k− ωn̂)−A(k + ωn̂)]

∣∣∣∣2
(54)

which is independent of ω0, appart in the prefactor. In
Figure 3 the approximate spectrum in the low frequency
part is shown by the dotted line (not visible for θ = 150◦).
There is no simple physical explanation for this part of the
spectrum. Simple neglect of the oscillatory part of I2 was
possible because there is no contribution from the poles,
and hence the entire spectrum comes from the background
term. As discussed previously, it is the pole term which
determines the nature of the energy transfer, while the
background term corrects the magnitude of the spectrum.
Further study of this part of the spectrum is required.

Although scattering of an EM wave by free and bound
charges are two different processes, and the resulting spec-
tra have different expressions, their numerical values are
nearly the same (after appropriate normalization). In Fig-
ure 4 the spectra of the Figures 2 and 3 are combined to-
gether. The spectrum resulting from scattering by a bound
charge is shown by a solid line and that of a free charge
by a dotted line. The two are nearly indistinguishable,
thus supporting the conjecture resulting from the photon
model. In the high photon energy regime the charge be-
haves as a free particle and hence the two cross sections
should be the same. In this paper we showed this from
first principles, without using the photon concept. How-
ever, this conclusion only applies in the vicinity of the
frequency ωc, and not in the low frequency interval. The
additional peak in Figure 3 for small frequencies is not
reproduced by a free charge.
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7 Conclusion

We have shown how to analyze the spectrum which re-
sults from interaction of an EM wave and a charge, either
free or bound, by using semiclassical radiation theory. It
was assumed that the free charge was localized in a finite
space, in our treatment this was taken as the 1s state of
a hydrogen atom. For a free charge we have used the rel-
ativistic treatment, based on the Klein-Gordon equation,
a choice which was primarily motivated by its simplic-
ity. A treatment which uses the Dirac equation is along
the same lines, but it is somewhat more complicated be-
cause of the additional contributions resulting from the
spin of the electron. Otherwise, the technical details of
the derivations and their discussion are the same as for
the Klein-Gordan equation, because the solution for the
wave function is know exactly [37]. The result should be
the same as from the well known treatment which is based
on the photon model [1].

We have shown that semiclassical theory reproduces all
the known results from the Compton scattering, including
the most difficult conceptual problems of the correlation
experiments. The latter are usually cited as a drawback of
semiclassical radiation theory. The spectrum has also been
calculated and shown to be different from the one derived
from the photon model. The difference is essentially of the
same kind as the difference between classical and quantum
theory.
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